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SUMMARY 

Pulsatile flows in the vicinity of mechanical ring-type constrictions in pipes were studied for transitional turbulent 
flow with a Reynolds number (Re) of the order of lo4. The Womersley number (Nw) is in the range 3CL50, with a 
corresponding Strouhal number (St) range of 0.0143-O-0398. The pulsatile flows considered are a pure sinusoidal 
flow, a physiological flow and an experimental pulsatile flow profile for mechanical aortic valve flow simulations. 
Transitional laminar and turbulent flow characteristics in an alternating manner within the pulsatile flow fields 
were studied numerically. It was observed that fluid accelerations tend to suppress the development of flow 
disturbances. All the instantaneous maximum values of turbulent kinetic energy, turbulent viscosity and turbulent 
shear stress are smaller during the acceleration phase than during the deceleration period. Various parametric 
equations have been formulated through numerical experimentation to better describe the relationships between 
the instantaneous flow rate (Q), the pressure loss (AP), the maximum velocity (P',,,=), the maximum vorticity 
((,,,=), the maximum wall vorticity ((,.,-), the maximum shear stress ( T , , , ~ )  and the maximum wall shear stress 
( T ~ , ~ ~ )  for turbulent pulsatile flow in the vicinity of constrictions in the vascular tube. An elliptic relationship has 
been found to exist between the instantaneous flow rate and the instantaneous pressure gradient. Other linear and 
quadratic relations between various flow parameters were also obtained. 

KEY WORDS pulsatile flow; nng-type constrictions; turbulent flow 

1. INTRODUCTION 

The possibility that haemodynamic factors may participate in the genesis and proliferation of 
atherosclerosis has fostered increased study of flow through various types of constrictions during the 
past decade.' A recent research interest concerns the relationship between vascular disease and the 
effects of constrictions and the magnitude of wall shear stress. It is therefore worthwhile from the fluid 
dynamics point of view to study and identify regions of very high shear and normal stresses in the flow 
(haemolysis), regions of very low or very high shear stress at walls (atheromatous lesions) and the extent 
of separated or reversed flow regions (thrombosis) in vascular pipes. 

For non-ring-type constrictions in vascular pipes, research investigations are numerous.'-'' Studies 
on the characteristics of unsteady flow in the vicinity of ring-type constrictions in vascular pipes are of 
interest to designers of artificial heart valves and miniature pulsatile blood flowmeters.I2 The relation 
between unsteady flow rate and pressure loss across constricted ring-type devices can provide the means 
of estimating the resultant flow rate from the measured unsteady pressure losses. The characteristics of 
unsteady/pulsatile turbulent flows observed can also be used to improve the transportation of non- 
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Newtonian fluid by miniature pulsatile pumps. An increase in flow rate of non-Newtonian materials of 
the same pressure gradient is possible with pulsating flow as compared with steady flow. El Masry and 
El Shobaskys13 reported that the energy saving can be as high 30% if an optimum frequency of pulsatile 
velocity is used. An experimental study of pulsatile flow in pipes within the transition range was made 
by Einav and Sok~lov. '~  In the study of intracardiac blood flow and large vascular stenosis, pressure 
loss, maximum flow velocity and shear stress are parameters of interest because of their relation with the 
atheroma caused by a large pressure drop across the constriction, the corpuscle damage due to a large 
shear stress and the thrombus phenomena resulting from the recirculation region."-17 

The present investigation focused on the study of the development of the flow structure in pulsatile 
turbulent flow, the pressure losses in pulsating flow through constrictions, the characteristics of the 
maximum pulsatile flow velocity, the maximum values of vorticity and shear stress and the pulsatile 
velocity profiles. Empirical expressions were then formulated to better describe the relationships 
between the instantaneous flow rate (Q), the pressure loss (AP), the maximum velocity (Vmax), the 
maximum vorticity (5,) and the maximum shear stress ( T , , , ~ )  for turbulent pulsatile flow in the 
vicinity of constrictions in the pipe. 

2. GOVERNING EQUATIONS AND NUMERICAL PROCEDURES 

Incompressible turbulent flow in vascular pipes near a constriction is governed by the Reynolds- 
averaged Navier-Stokes equations. By using the eddy viscosity concept and the k-& turbulence model 
closure, the dimensionless governing equations of two-dimensional flow can be expressed in 
axisymmetric co-ordinates as follows: continuity equation 

a a 
-(m) + -(w) = 0, az ar 

z-momentum equation 

i a  i a  
S t - + - - ( r u  ) +--(mv) = 

at r az r az 

r-momentum equation 

2v t) e r 2  
St -+-- (ruv)+-- (d)=--+--  -+- +-- 2rve- - u  -, 

ar r az a [rue(: f)] i:r(  
av l a  i a  
at r az r ar 

turbulent kinetic energy equation 

ak 1 a l a  
St-  + --(ruk) + --(rvk) = 

at r az r ar 

turbulent dissipation rate equation 

St-+--(m&)+--(w&)+--  i a  
a& 1 a 
at r az r ar r az aE az a,ar k k 

1 a ( r 2 -  v a&) +-- ; aar ( r-- v, a&) + v C  & - C - C 2 f , - .  &2 

The effective viscosity u, is defined as 

v, = V ,  + 1/Re, 

where 1/Re represents the contribution of the fluid molecular viscosity and u, is the dimensionless 
turbulent eddy viscosity defined by 

V ,  = C,k2/&. (7) 
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The variable G in the source terms of the k-& equations is given as 

G = 2[ (g)2+(g)2+g] + (g + z)2. 

1171 

(8) 

The values of the five empirical constants in the k-c equations are17,18 

The parameterh in the &-equation represents the streamline curvature correction for the standard k-& 
model and is defined 

k2 u2 + 3 Ri 
RZ ' t - E2 f, = 1.0 - C,Rit, c, = 0.2, (9) 

where Rit is the turbulent Richardson number and Rc is the local radius of streamline curvature given by 

In the numerical process these equations are reformulated in a curvulinear co-ordinate system with 
the axisymmetric physical components taken as the dependent variables. Using the co-ordinate 
transformation 

the expressions for the Jacobian and contravariant metric tensor components are then given by 

The curvilinear velocity components (U, V )  have a relation with the axisymmetric velocity (u, v) as 

Hence the transformed equations can be expressed in the general semi-strong conservation 

aG a a 
- + - (E  - M )  + -(F - N )  - s = 0,  
at a t  a 
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* E  & 

k k 
Ss = utC,f,G --C2E-. s, = 0, s, = 0, s 3 = - - v e - - ,  P 2% S4 = u,G* - E ,  

r r2 

The non-linear equations (14) are solved by an iterative process. All the physical variables (u, v, p ,  k, E) 
are updated as 

where n and n + 1 are the previous and current iteration numbers respectively and 4 represents each of 
the physical variables. Substituting equation (1 5) into equation (14), the governing equations are then 
expressed in incremental form. The resulting equations are solved by the SIMPLE algorithm of 
Patankar" on a collocated non-staggered grid for ease of imposing the pressure boundary conditions. 
All terms containing incremental variables are discretized by three-point difference schemes: a first- 
order hybrid upwind difference scheme for convective terms, a second-order central scheme for 
diffusive terms, a first-order forward scheme for pressure terms and a first-order backward scheme for 
continuity equations. The residuals (R) are calculated by second-order difference schemes: a second- 
order upwind scheme for convective terms, a central scheme for diffusive terms and a second-order 
forward or backward scheme for pressure terms and continuity equations. Owing to the variation in the 
main flow direction in pulsatile flows, the discretizations of pressure gradient terms and continuity 
equations are adjusted according to the instantaneous main flow direction. A modified Crank-Nicolson 
scheme with a weighting factor 9 is used to discretize the time-dependent terms in the governing 
equations. In the present work, 0 = 0.6 was adopted after a series of numerical tests. The values of time 
step increment At chosen follow closely the general CFL criteria. At convergence the residual vector R 
approaches zero and the convergent results approach second-order accuracy. 
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3. GEOMETRICAL CONFIGURATION AND BOUNDARY CONDITIONS 

The geometrical parameters are defined in Figure l(a). The constriction has an opening ratio of 0.5 and a 
thickness ratio of 0.1. The grid points in the r-direction are equally distributed. A stretching hc t ion  is 
used for the grid point distribution in the z-direction, as shown in Figure 1 (b). Grid independence tests 
show that a grid size of 41 x 201 (r x z) is sufficient for the present range of flow investigations. 

In the solution domain shown in Figure l(a) the velocity profile at the upstream inlet boundary is 
described by 

(n + 1)(2n + 1) u(t)(l - - 2 3 ’ I n ,  u(r, t )  = 
2n2 

where n is given a value of 6.0 in the present study. This power law rather than a parabolic profile is used 
at every time step, because the velocity profiles of pulsatile flow are generally not parabolic. The average 
inlet velocity U ( f )  is specified according to the type of pulsatile flow as shown in Figure 2: type I-pure 
sinusoidal flow, i&(t) = sin(2zf/Ts,); type 11-physiological flow, iiphys(t);3’22’23 type III-experi- 
mental pulsatile flow, iiexpr(t), simulating the operation of a mechanical aortic valve.”24 

At each time step along the solid wall the no-slip velocity condltion is used, i.e. u = 0 and v =  0. 
Along the centreline, axisyrnmetric conditions are applied for all variables, i.e. &/ar = 0, v = 0, 
ap/ar = 0, ak/ar = 0 and &/ar = 0. At the downstream exit section the pressure is fixed at zero. The 
flow is considered to be fully developed, so the first-order differentials of all other variables along the z- 
direction are set to zero. The boundary conditions at the inlet section and the k and E wall boundary 
conditions are described as follows. 

The values of k and E at the inlet section are given b 9 5  

(a) geometrical parameters (b) grid distribution in z-direction 

Figure 1. Configuration of pipe with ring-type constriction 
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Figure 2. Three types of pulsatile flow 
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where the mixing length 1, is the smaller value either determined by the Nikuradse formula 

1, - = 0.07 -0.04 D 
or computed from the wall region formula 

I, = 0*41y, 

where y is the normal distance from the wall. These formulations give zero values for k and E at the 
centre of the vascular pipe, which is not realistic. To compensate for the possibility of unrealistic 
centreline values, a minimum value of the turbulent intensity of O.O03C(t) was determined.25 A long 
computational vascular pipe region upstream of the constriction is also used in the present calculation to 
minimize this effect. 

Along the solid wall a wall function is used to obtain the values of k and E at those grid points adjacent 
to the solid wall. D o u ~ ~  proposed an analytical function to connect u*, up and y+ for the whole flow 
region as follows (and as shown in Figure 3): 

Y + / 5  ~ - 2 ~ 5 1 n ( l + ~ ) + 7 . 0 5 ( 1 + y + 1 5 ) 2 + 2 . 5 (  U y + / 5  ) - B * ,  
u* - 1 + y+/5  

where B* represents the effect of wall roughness and is equal to zero in the present study and up is the 
velocity component parallel to the solid wall. The values of k and E at the corresponding grid points are 
then calculated as 

where 
3 

+ 0.008(23.2 - y + ) y + / (  1 +$) . 2 A =  
1 + 5/y+ 

4. RESULTS AND DISCUSSIONS 

The results presented here are focused on cases corresponding to intracardiac flow and valvular 
regurgitation. The blood can be considered as a Newtonian fluid in the larger artery, where the shear rate 
is larger.'5,'7,27 At 36-37 "C the blood density p is 1.055 x lo3 kg m-3 and the kinematic viscosity v 
is 0.04 P or 3.79 x lop6 m2 s-'. The peak velocity at the mitral valve opening section is about 3 . C  
6-0 m s-'. The artery diameter is about (2.0-3.0) x m and the corresponding peak Reynolds 
number Re is of the order of lo4. The normal physiological frequency is about 72 beats per minute or 
1.2 Hz, which gives a corresponding Womersley number Nw = D J ( o / u )  of the order of 50.0. The 
above range of parameters was considered in the present study. Only the general trends of the results are 
presented in this paper. 

4.1. Turbulent pulsatile Jlow in tube with ring-type constriction 

Flow development. The general flow development of pulsatile flow is illustrated here for the case of 
Re = lo4, Nw = 50 and St = 0.0398. The sinusoidal, physiological and experimental pulsatile flow 
developments are presented in Figures 3-5 respectively. For each pulsatile flow the calculation was 
carried out for more than one complete periodic cycle. Within the interval 0.0 < t/T < 20165, when 
the mean flow decreases to zero, the recirculation region on the downstream side of the constriction 
usually grows larger. This is shown through the development of the streamlines of the flow. In the flow 
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field, observations show that when the turbulent energy increases, the laminar cores of the flow field 
become smaller. This can also be observed from the shear stress contours presented in Figures 3(bk 
5@). For 20165 < t / D  < 30/65 the flow generally reverses towards the negative z-direction. The 
differences in the pulsatile flow characteristics of the three types of pulsatile flow simulation appear to 
be mainly due to the differences in their original mean velocity fields given in Figure 2. At the 
beginning of the reverse flow the region of larger turbulent shear stress is generally located at the right 
side of the constriction at t /T= 22/65, 26/65 and 26/65 for the sinusoidal (Figure 3), physiological 
(Figure 4) and experimental (Figure 5 )  pulsatile flows respectively. The region with large turbulent 
shear stress moves gradually to the left side of the constriction for both the sinusoidal and 
physiological flows, but it is generally located on the right side of the constriction for the experimental 
pulsatile flow. For 20165 < t /D  < 30165 the recirculation region of the pulsatile flow field generally 
developed towards the left side for all pulsatile flows. In the subsequent time steps the left side of the 
recirculation region grew larger for the sinusoidal and physiological flows than for the experimental 
pulsatile flow field. 

Centreline velocity (V,) and turbulent kinetic energy (k,). The centreline velocity is an important 
parameter in the study of pulsatile flow fields. For every two time steps the centreline velocity and 
centreline turbulent kinetic energy distributions along the z-direction are presented in Figures 6 8  for 
the case of Re = lo4, Nw = 50 and St = 0.0398 for each of the pulsatile flows. 

The characteristics of the V,, and k, distributions along the axial direction are similar between the 
physiological and experimental pulsatile flows, as shown in Figures 7 and 8 for the case of Nw = 50 and 
St=O,O398. The maximum foward Yc-value is equal to 5-1 for both types of pulsatile flow. The 
maximum k,-value is about 0.9. During the small time intervals 42/65 < t /T < 1.0 and 
42/65 < t /T 6 52/65 the fluid is nearly stationary and the turbulent kinetic energy diminishes 
completely to zero. Hence for these two pulsatile flow fields there exist both laminar and turbulent 
flow characteristics over a complete cyclic period. 

4.2. Parametric relations of turbulent pulsatile flows in pipe with ring-type constriction 

Relation between pow rate (Q) and instantaneous maximum values of velocity (V,,), turbulent 
kinetic energy (ha) and turbulent viscosity (w~,,,). A linear relationship between the flow rate Q and 
the maximum flow velocity V,, exists. This is shown in Figure 9 for the case of Nw=50 and 
St = 0.0398. All three types of pulsatile flow exhibit a similar linear relation of the form 

V,, = CWilQ, 

where C,, = 6.80 in the present study. The instantaneous maximum velocity reaches its peak value at 
the same time as the instantaneous flow rate. The phase angle between these two parameters is equal to 
zero. 

The relation between the flow rate Q and the maximum turbulent kinetic k,,,= is not linear (Figure 10). 
At the same flow rate, during the acceleration period the instantaneous k has a smaller value of & for 
all three pulsatile flows. This implies that the acceleration tends to suppress the development of fluid 
disturbances. For the sinusoidal flow the effect of the initial fluid stationary condition was not felt until 
after one-quarter of a cycle, as shown in Figure lo@). Symmetrical flow phenomena exist between the 
forward and backward parts of the pulsatile flow characteristics shown in Figure lo@). At Q = 0.0, k,- 
is not equal to zero but has a value of 0-015. This property of the sinusoidal flow is different from the 
other two pulsatile flows, where ha = 0 at Q = 0. 
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Figure 3.  Sinusoidal turbulent flow field development in pipe with ring-type constriction for Re = lo4, Nw = 50, St = 0.0398 and 
d / D  = 0.5, h / D  = 0.1. (a) Streamlines (upper half) and vorticity contours (lower half). (b) Shear stress (upper half) and isobar 

(lower half) 
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Figure 4. Physiological turbulent flow field development in pipe with ring-type constriction for Re = lo4, Nw = 50, St= 0.0398 
and d / D  = 0.5, h/D= 0.1. (a) Streamlines (upper half) and vorticity contours (lower half). (b) Shear stress (upper half) and isobar 

(lower half) 
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Figure 5. Experimental pulsatile turbulent flow in pipe with ring-type constriction for Re= lo4, Nw=50, Sz=O.O398 and 
d / D  = 0.5, h / D  = 0.1. (a) Streamlines (upper half) and vorticity contours (lower half). (b) Shear stress (upper half) and isobar 

(lower half) 
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Figure 6. Sinusoidal turbulent flow in pipe with constriction of d / D  = 0.5, h/D = 0.1 and Re = lo4, Nw = 50, St= 0.0398. 
(a) Centreline velocity. (b) Centreline turbulent kinetic energy 

The development of the characteristics of turbulence in the pulsatile flow field with time can be 
deduced from the relationship between the flow rate Q and the maximum turbulent viscosity u,,,, as 
shown in Figure 11. For the sinusoidal flow, u,,,, is consistently larger than zero, except during the 
starting phase of the pulsatile flow period. The flow in general has a smaller u,,,, during the 
acceleration period than during the deceleration period. The flow is in general turbulent for the 
sinusoidal flow, with a minimum instantaneous ut,- of the order of 0.016. For the physiological and 
experimental pulsatile flows, ut,- = 0-0 for 0 < Q < 0.3 within a small time interval at each of the 
periodic cycles. Hence these flows show transitional characteristics of laminar-to- turbulent and 
turbulent-to-laminar flow developments in every pulsating cycle. 

Relation betweenflow rate (QJ andpressure loss (Ploss). The relation between the flow rate Q and 
the pressure loss Plo,, is quadratic in nature, as shown in Figure 12. The peak non-dimensional P1,,, is 
about 10.5 at the maximum instantaneous flow rate. The phase angle between the two parameters is 
equal to zero. Curve fitting for the three pulsatile flows gives a relationship of the form 

5 o s s  = c p ~ Q l Q l *  (22) 

where Cpl = 17.9. Equation (22) is plotted in Figure 12 as the full curve. 
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Figure 7. Physiological turbulent flow in pipe with constriction of d/D=O.5, h/D=0.1 and Re= lo4, Nw = 50, St= 0-0398 
(a) The centreline velocity. @) The centreline turbulent kinetic energy 
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Figure 8. Experimental pulsatile turbulent flow in pipe with constriction of d/D=0.5 ,  h/D=0.1 and Re= lo4, Nw= 50, 
St = 0.0398. (a) The centreline velocity. (b) The centreline turbulent kinetic energy 

(a) At Nw = 30. St = 0.0143 (b) At Nw = 50. St = 0.0398 
Figure 9. Relation between flow rate and maximum flow velocity of flow in pipe with constriction of d /D = 0.5, h /D = 0.1 and 

Re= lo4 
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Figure 10. Relation between flow rate and maximum turbulent kinetic energy of flow in pipe with constriction of d / D  = 0.5, 
h/D=0.1 and Re= lo4 
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Figure 1 1 .  Relation between flow rate and maximum turbulent viscosi 
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Figure 12. Relation between flow rate and pressure loss of flow in pipe with constriction d / D  = 0.5, h /D = 0.1 and Re = lo4 
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Figure 13. Relation between flow rate and pressure gradient of flow in pipe with constriction of d / D  = 0.5, h / D  = 0.1 and Re = lo4 
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Relation betweenflow rate (Q) and pressure gradient (Q/dz). The relation between the flow rate Q 
and the pressure gradient Q/dz along the axial direction in the fully developed region is presented in 
Figure 13. The phase angle between these two parameters is 90". The peak Q/dz appears at the instant 
of zero flow rate (Q = 0), when the flow has its maximum acceleration or deceleration. Conversely, 
dp/dz = 0 occurs at the instant of maximum flow rate, when the flow acceleration is equal to zero. 
Hence the characteristics of Q/dz depend mainly on the flow acceleration or deceleration. The 
pressure gradient has the same absolute values for the same acceleration and deceleration. For the 
sinusoidal flow this relation can be expressed as 

where C,,, = 0.4 and CPz2 = 0.785 for the present study. Equation (23) is plotted in Figure 13@) as the 
full curve. 

Relation betweenflow rate (Q) and maximum values of vorticity (a,,) and wall vorticity (&,,,). 
As shown in Figure 14, the maximum vorticity R,, is linearly related to the flow rate Q. For both 
St = 0.0398 and 0.0143 the relationship can be generally expressed as 

Q- = GmQ5 (24) 

where Cam = 240-5 in the present study. 
A similar relation between Q and the maximum wall vorticity &,,, is shown in Figure 15. In a 

complete cycle the peak wall vorticity Rw,mx is less than 1/6 of the maximum vorticity R,, of the 
whole flow field. &,,, also has its peak value at the instant of maximum flow rate. 

Relation between flow rate (Q) and maximum values of shear stress (z,,) and wall shear stress 
(zw,,,). In physiological flow, turbulent shear stress is directly related to the cause of blood cell 
damage. The numerical results for the instantaneous maximum values of the turbulent shear stress z,, 
of the whole flow field and the wall shear stress zW,- are presented in Figures 16 and 17 respectively. 
The relation between Q and x,, is complex. For the same Q-value the z,,-value is smaller during 
acceleration than during deceleration. This is similar to the phenomenon discussed in the turbulent 
viscosity development. The peak non- dimensional z, is 0.48 at the instant of maximum flow rate. 
The wall shear stress z,,,, has a simple quadratic relationship with the flow rate. The three pulsatile 
flows investigated here show a similar relation for both St = 0-0143. It can generally be represented by 

zw,max = -C~wdQlQl~ (25) 

where C,, = 0.032 in the present study. Equation (25) is plotted in Figure 17 as the full curve. 
Similarly to the vorticity values, the peak z,,, is much smaller than the overall turbulent shear stress 
and only about 1 /25 of the peak value of the overall maximum instantaneous maximum turbulent shear 
stress zmn. 

4.3. Application of present results to intracardiac flow 

D = 2-5 x lo-' m. The dimensional pressure is given by 
Consider the two parameters of pressure loss and turbulent shear stress for the case of Re = lo4 and 
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(a) At Nw = 30, St = 0.0143 (b) At Nw = 50. St = 0.0398 

Figure 14. Relation between flow rate and maximum vorticity of flow in pipe with constriction of d/D = 0.5, h/D = 0.1 and 
Re= lo4 

Figure 15. Relation between flow rate and maximum vorticity of flow in pipe with constriction of d /D =0.5, h/D =0.1 and 
Re= lo4 

Re = lo‘, Nw = 30, St = 0.0143 
physio: A ; eXp2: t : 

Re = lo‘, Nw = 50, St = 0.0398 
physio:o : exp2:+ : sin: 0 

. -  
-0.2 0 . J  

Otl) 
0.8 .-o.: 0.0  

O(I) 
0 . 8  

(a) At Nw = 30, St = 0.0143 (b) At NW = 50. St = 0.0398 

Figure 17. Relation between flow rate and maximum wall turbulent shear stress of flow in pipe with constriction of d/D=0.5,  
h/D=0-1 andRe=104 
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The value of the peak pressure loss is 2.674 x lo4 N mP2 or 200-7 mmHg. This value is large enough 
to cause atheroma, which is developed at a pressure drop greater than 30 mmHg. At Q = 0.50,, the 
pressure drop is equal to 50.2 mmHg, which is also larger than the critical value. 

The dimensional wall shear stress is given by 

T ~ , ~ ~  = 77.59QlQl. (27) 

The peak wall shear stress is equal to 47.8 1 N m-2, which is close to the critical value of endothelium 
deterioration, 40 N mP2. The peak dimensional turbulent shear stress is equal to 1.1 15 x 1 O3 N m-*. 
This value is very much larger than the critical value of incipient haemolysis, 400 N m-2. At 
Q= 0.50,, the turbulent shear stress is equal to 418.1 N m-2, which is also greater than the critical 
value. 

5. CONCLUSIONS 

Three types of pulsatile turbulent flow in a vascular pipe with a ring-type constriction have been 
computed for a Reynolds number of the order of lo4, Womersley numbers of 30 and 50 and 
corresponding Strouhal numbers of 0.0143 and 0.0398. The three pulsatile flows are a pure sinusoidal 
flow, a physiological flow and an experimental pulsatile flow profile for physiological flow simulations. 

The sinusoidal pulsatile flow in the vicinity of a pipe with a ring-type constriction is observed to be 
always turbulent after the pulsatile flow is initiated. The flow disturbance is not diminished completely, 
because the time period with small velocity in each cycle is very short. The other two physiological-type 
non-symmetrical pulsatile flows investigated exhibit both laminar and turbulent flow characteristics in 
an alternating manner within the pulsatile flow fields. The length of the laminar core in the latter 
pulsatile flow, as shown through the turbulent shear stress contours, was observed to change in 
magnitude and domain with respect to time in a systematic manner. 

Various parametric flow relationships are obtained to describe the pulsatile flow characteristics. 
Numerical linear relationships are found between the flow rate and the maximum values of velocity and 
vorticity. Quadratic relationships are obtained between the flow rate and the pressure loss across the 
constriction and between the flow rate the maximum wall shear stress. An elliptic relationship is 
observed between the flow rate and the pressure gradient. From the flow characteristics obtained, flow 
acceleration was observed to suppress the development of flow disturbance in the pulsatile flows studied 
here. All the instantaneous maximum values of turbulent kinetic energy, turbulent viscosity and 
turbulent shear stress are smaller during the acceleration phase than during the deceleration period. 

APPENDIX: NOMENCLATURE 

coefficients of turbulence model 
orifice diameter 
vascular pipe diameter, used as characteristic length L 
coefficient of turbulence model 
obstacle height, (D - 412  
dimensionless turbulent kinetic energy 
Womersley number, D,/(o/u) 
dimensionless pressure 
dimensionless pressure loss 
flow rate, &-u(t)/4 
maximum flow rate, 7114 
radial co-ordinate, radial distance 
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Greek letters 

G-Q n 

Reynolds number, iipeakD/v 
Richardson number of streamline curvature 
Strouhal number, D/iipakT= (1 /2n)Nw2/Re 
time co-ordinate 
time period of physiological flow cycle 
time period of sinusoidal flow cycle 
dimensionless axial velocity component 
instant average velocity in vascular pipe 
peak tz(t)-value, characteristic velocity 
dimensionless radial velocity component 
axial co-ordinate, axial distance 
recirculation length 

dimensionless dlssipation rate of turbulent energy 
effective viscosity, 1 /Re + v, 
turbulent eddy viscosity 
co-ordinate variables in general curvature co-ordinate system 
fluid density 
dimensionless shear stress, v,(&/ar + aV/az) 
phase angle between flow rate and pressure gradient variation in pulsatile flow 
dimensionless vorticity, &/ar - aV/az 
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